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Abstract. We present an exact solution of the one-dimensional random field Ising model (RFIM)
with synchronous rather than sequential spin-dynamics, whose equilibrium state is characterized by
a temperature-dependent pseudo-Hamiltonian, based upon a suitable adaptation of the techniques
originally developed for the sequential (Glauber) dynamics RFIM. Although deriving the solution
is somewhat more involved in the present model than in the case of the sequential RFIM, we are
able to prove rigorously that the physics of the two RFIM versions are asymptotically identical. We
thus recover the familiar devil’s staircase form for the integrated density of local magnetizations,
and find a non-zero ground state entropy with an infinite number of singularities as a function of
the random field strength.

1. Introduction

The one-dimensional random field Ising model is one of the most extensively studied disordered
systems [1–10]. Most of the exact solutions that have been presented rely on a method which
goes back to [1]: conditioning the partition functionZN of anN -spin chain on the stateσN of the
last spin (giving the two quantitiesZN,±1), and subsequently constructing a recurrence relation
expressing theZN+1,±1 in terms of theZN,±1. The free energy of the system can be written
as an integral over the distribution of the subsequent ratioskN of the conditioned partition
functionsZN,±1. Adding new spins to the chain one by one (and thus also new random fields)
defines a discrete Markovian process for these ratios, or their probability densityPN(k), whose
stationary stateP∞(k) fully determines the asymptotic free energy per spin. In early papers
based on this technique, approximations of the stationary solution were calculated in certain
parameter regimes, e.g. for zero temperature [2]. It was later shown [3] that in certain regions
of parameter space, includingT > 0, the integrated stationary densitŷP(k) = ∫ k

0 dzP (z)
acquires the form of a highly non-analytic object known as the devil’s staircase. The support
of the densityP(k) is now known to be a zero-measure Cantor set [8,9,11], and the spectrum
f (α) of generalized dimensions has been fully calculated [12, 13]. Phase transitions in the
usual thermodynamic sense are absent, but the transition of the fractal dimension of the support
of P(k) toDF < 1 has significant physical consequences; in particular, there are regions in
the phase diagram where observables such as the local magnetization take values only from a
disconnected set.

In this paper we study an alternative to the more standard types of one-dimensional
RFIM models. Here the stochastic microscopic alignment of spins to local fields is not
executed sequentially (according to a Glauber rule, leading to the conventional Boltzmann-
type equilibrium distribution with the standard Ising Hamiltonian), but the spin states are
updatedsynchronously, i.e. in parallel, at discrete time steps. Ising models with synchronous
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dynamics have been studied, e.g., in the context of neural networks [14,15] and probabilistic
cellular automata (see, e.g., [16]). Synchronous execution of the (originally sequential)
Glauber laws is known to lead again to a unique equilibrium state [15], which can formally
be written in the Boltzmann form, and which in principle enables equilibrium statistical
mechanical calculations. However, the parallel dynamics (pseudo-)Hamiltonian is a function of
temperature, and thermodynamic relations will generally have to be modified. What is known
about the relation between the equilibrium physics of the two types of dynamics concerns
mostly infinite-range models. To be specific: in the case of predominantly negative exchange
interactions the two dynamics types clearly lead to completely different physics, with period-
two limit cycles appearing in the synchronous dynamics case. In the case of predominantly
positive exchange interactions, however, the picture is less clear. For instance, the phase
diagram of the Sherrington–Kirkpatrick [17] model (withJ0 > 0) appears not to be affected
by synchronous dynamics [18], whereas for the Hopfield model [19] the phase diagram does
change [20]. We are not aware of equilibrium studies involving disordered spin chains with
synchronous dynamics.

In solving the parallel dynamics RFIM we find that the standard RFIM techniques need to
be adapted, in that conditioning of the partition function on the state of the last spin in the chain
is no longer sufficient. The present model involves a more complicated stochastic process in
terms of three ratios of conditioned partition functions rather than one. We then show that
asymptotically the expectation values of the local magnetizations of sequential and parallel
dynamics become identical. We examine the occurrence and properties of the devil’s staircase
shapes for the integrated probability densities of the relevant observables, and we calculate
the ground state entropy, which exhibits the non-trivial behaviour as a function of the random
field strength which had also been observed for sequential dynamics chains [5].

2. Model definitions

Our model is defined as a collection ofN Ising spinsσ = (σ1, . . . , σN) ∈ {−1, 1}N , arranged in
a one-dimensional chain. The dynamics is a stochastic alignment to local fields of the familiar
form, however, in contrast to the more conventional Glauber-type rules where individual spin
updates are made sequentially, here the individual spin updates are made in a fully synchronous
way at each discrete time step:

∀i ∈ {1, . . . , N} : Prob[σi(t + 1) = ±1] = 1
2[1± tanh[βhi(σ(t))]] (1)

hi(σ(t)) =
N∑
j=1

Jijσj (t) + θi . (2)

The parameterβ = 1/T controls the amount of stochasticity in the dynamics; forβ = ∞
the process (1) is a deterministic map, forβ = 0 is a fully random map. The variablesJij
andθi represent spin interactions and external fields, respectively. The Markov chain (1) can
alternatively be defined in terms of the microscopic state probabilitypt(σ):

pt+1(σ) =
∑
σ′
W [σ;σ′]pt(σ′) W [σ;σ′] =

N∏
i=1

eβσihi (σ
′)

2 cosh[βhi(σ′)]
. (3)

For any finiteβ and finiteN the process (3) is ergodic and evolves into a unique stationary
distributionp∞(σ). It can be shown that this is an equilibrium state (obeying detailed balance)
if and only if Jij = Jji for all pairs (i, j). In particular, there is no need to exclude self-
interactions, which would have been required to find detailed balance in models with sequential
dynamics. In the detailed balance case the corresponding equilibrium state probabilities can
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only formally be written in the Boltzmann formp∞(σ) ∼ exp[−βHβ(σ)], with the so-called
pseudo-Hamiltonian†Hβ(σ), which was first derived in [15]:

Hβ(σ) = − 1

β

N∑
i=1

log[2 cosh(βhi(σ))] −
N∑
i=1

σiθi . (4)

Due to the synchronous execution of the alignment dynamics, and the resulting non-Gibbsian
equilibrium distribution, conventional thermodynamic relations will generally no longer hold.
We can still formally define a free energy per spin as

fN = − 1

βN
log

∑
σ

e−βHβ (σ) (5)

which will play a useful role as a generating function for equilibrium averages, but which no
longer carries the usual thermodynamic significance.

In this paper we consider the case where the external fieldsθi have been drawn
independently at random from a symmetric binary distributionw(θ) with varianceθ̃2, and
we choose spin interactionsJij describing a strictly ferromagnetic(J > 0) or strictly anti-
ferromagnetic(J < 0) (periodic or open) one-dimensional chain:

w(θ) = 1
2δ[θ − θ̃ ] + 1

2δ[θ + θ̃ ] Jij = J (δj,i+1 + δj,i−1). (6)

We can always put̃θ > 0. Averages overw(θ) will be denoted as:g(θ) = ∫
dθg(θ)w(θ).

The relevant macroscopic equilibrium observables in this system are the overall magnetization
m and the next-time/nearest-neighbour correlation functiona:

m = lim
N→∞

1

N

∑
i

〈σi〉eq a = lim
N→∞

1

N

∑
i

〈σi tanh[βhi+1(σ)]〉eq (7)

in which the equilibrium averages are calculated using the Boltzmann distribution with the
pseudo-Hamiltonian (4). Note thatm, a ∈ [−1, 1]. The order parametera measures
equilibrium state correlations of nearest-neighbour spins probed at different but successive
times, which follows from the identity

〈σi tanh[βhi+1(σ)]〉eq= lim
τ→∞

1

τ

∫ τ

0
dtσi(t)σi+1(t + 1).

The observablem follows as the moment of the joint distribution for random fields and local
equilibrium magnetizations:

P±(µ) = lim
N→∞

1

N

∑
i

δθi ,±θ̃ δ[µ− 〈σi〉eq] (8)

sincem = ∫
dµµ[P +(µ) + P−(µ)]. Using simple general properties such as〈σi〉eq =

〈tanh[βhi(σ)]〉eq, which follows directly from stationarity of (3), we also see that (5) generates

a = −1

2

∂

∂J
fN . (9)

3. Solution

The three key ingredients which in combination render the present model non-trivial are: (i) the
short-range connectivity, (ii) the random external fields, and (iii) the synchronous dynamics
leading to a non-Boltzmann equilibrium state. If we replace the synchronous dynamics by a
standard sequential Glauber one we recover the standard RFIM [2,3], exhibiting transitions to

† Note that this pseudo-Hamiltonian depends onβ, hence the name.
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non-trivial states where the integrated distribution of local magnetizations acquires the form
of a devil’s staircase and where〈σi〉eq itself takes values from the Cantor set [4]. We solve
model (2), (3), (6) using a suitable adaptation of the techniques in [2, 3], i.e. by studying the
effect on the partition functionZN of adding one extra spin to the chain (and thus one extra
random field), which can be described by a Markovian stochastic map for a finite number of
characteristic quantities. In the present model with synchronous dynamics, however, this map
is considerably more complicated than that found in [2,3]. Due to the repeated occurrence of
terms of the form coshβ[J (σi−1+σi+1)+θi ] in the synchronous dynamics partition function,
adding one spin induces effects which propagate backward over two sites, rather than just one;
thus, in order to ensure a closed Markovian form for the map to be created we need to keep
track of the states of the last two spins in the chain.

3.1. Adaptation of the RFIM techniques

In order to find the free energy per spin (5) we have to calculate the synchronous dynamics
partition functionZN =

∑
σ e−βHβ (σ), with the pseudo-Hamiltonian (4), which for an open

chain reads

ZN =
∑
σ1...σN

�1[0, σ1, σ2]

[ N−1∏
i=2

�i [σi−1, σi, σi+1]

]
�N [σN−1, σN, 0] (10)

where

�i [σi−1, σi, σi+1] = 2 coshβ[J (σi−1+σi+1)+θi ]e
βσiθi .

We adapt the construction in [2,3] and write forN > 1 the partition function (10) as the sum
of four new quantities, which can be interpreted as conditional partition functions in which the
states of the last two spins in the chain are prescribed:

ZN = ZN,↑↑ +ZN,↑↓ +ZN,↓↑ +ZN,↓↓. (11)

ForN > 2 they are given by
ZN,↑↑
ZN,↑↓
ZN,↓↑
ZN,↓↓

 = ∑
σ1...σN

�1[0, σ1, σ2]

[ N−1∏
i=2

�i [σi−1, σi, σi+1]

]

×�N [σN−1, σN, 0]


δσN−1,1 δσN ,1
δσN−1,1 δσN ,−1

δσN−1,−1 δσN ,1
δσN−1,−1 δσN ,−1

 . (12)

ForN = 2 one simply hasZ2,?? = �1[0, ?, ?]�2[?, ?,0], for all (??) ∈ {(↑↑), (↑↓), (↓↑),
(↓↓)}. For future use we also mention the following simple identity:

Z2,↑↓Z2,↓↑
Z2,↑↑Z2,↓↓

= �1[0, 1,−1]�1[0,−1, 1]

�1[0, 1, 1]�1[0,−1,−1]

�2[1,−1, 0]�2[−1, 1, 0]

�2[1, 1, 0]�2[0,−1,−1]
= 1 (13)

which immediately follows from the above definition of the functions�i [. . .].
Enlarging the chain fromN to N+1 spins gives rise to four new conditional partition

functions{ZN+1,??}, which can be expressed in terms of the previous{ZN,??}. Note that, in
contrast to the situation with the standard random field Ising chains [2,3], here this would not
have been possible if we had only conditioned the partition function on the state of the last
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spinσN of the chain, i.e. the{ZN+1,?} cannot be expressed in terms of the{ZN,?}. After some
simple book-keeping we can derive from (12) the following recurrent relations:(

ZN+1,↑↑
ZN+1,↑↓

)
=M+[θN+1, θN ]

(
ZN,↑↑
ZN,↓↑

)
(
ZN+1,↓↑
ZN+1,↓↓

)
=M−[θN+1, θN ]

(
ZN,↑↓
ZN,↓↓

) (14)

in which the two (random) matricesM±[θN+1, θN ] are defined via

M±[θ ′, θ ] = 2 cosh[β(θ ′ ± J )]
(

eβθ
′

0
0 e−βθ

′

)( cosh[β(θ+2J )]
cosh[β(θ+J )]

cosh[βθ ]
cosh[β(θ−J )]

cosh[βθ ]
cosh[β(θ+J )]

cosh[β(θ−2J )]
cosh[β(θ−J )]

)
. (15)

These then combine to form a four-dimensional stochastic process, generated by 4×4 random
matricesM [θN+1, θN ], the stationary state of which will lead us to the free energy per spin:

M [θ ′, θ ] =


M+

11[θ
′, θ ] 0 M+

12[θ
′, θ ] 0

M+
21[θ

′, θ ] 0 M+
22[θ

′, θ ] 0
0 M−11[θ

′, θ ] 0 M−12[θ
′, θ ]

0 M−21[θ
′, θ ] 0 M−22[θ

′, θ ]

 (16)

f∞ = − lim
N→∞

1

βN
log




1
1
1
1

 · [ N−1∏
i=2

M [θi+1, θi ]

]
Z2,↑↑[θ2, θ1]
Z2,↑↓[θ2, θ1]
Z2,↓↑[θ2, θ1]
Z2,↓↓[θ2, θ1]


 . (17)

In order to evaluate (17) it will turn out helpful to define the following three ratios of the
conditional partition functions:

k(1)n = e2βθn
Zn,↑↓
Zn,↑↑

k(2)n =
cosh[β(θn+J )]

cosh[β(θn−J )]
Zn,↓↓
Zn,↑↓

k(3)n = e2βθn
Zn,↓↓
Zn,↓↑

. (18)

From the recurrent relations (14) it follows that the ratios (18) are successively generated by

k
(1)
n+1 =

k(3)n cosh[βθn] + k(1)n k
(2)
n cosh[β(θn−2J )]

k
(3)
n cosh[β(θn+2J )] + k(1)n k

(2)
n cosh[βθn]

k
(2)
n+1 = e−2βθnk(1)n k

(3)
n

cosh[βθn] + k(2)n cosh[β(θn−2J )]

k
(3)
n cosh[βθn] + k(1)n k

(2)
n cosh[β(θn−2J )]

k
(3)
n+1 =

cosh[βθn] + k(2)n cosh[β(θn−2J )]

cosh[β(θn+2J )] + k(2)n cosh[βθn]
.

We note from these iterative equations that ifk(1)n = k(3)n , then alsok(1)n+1 = k(3)n+1. Furthermore,
it follows from identity (13) thatk(1)2 = k(3)2 . Thus we are guaranteed thatk(1)n = k(3)n for all
n > 2, which simplifies our equations considerably:

k
(1)
n+1 =

cosh[βθ̃ ] + k(2)n cosh[β(θn−2J )]

cosh[β(θn+2J )] + k(2)n cosh[βθ̃ ]
k
(2)
n+1 = e−2βθnk(1)n k

(3)
n+1 = k(1)n+1.

Further substitution of the second of the above equations into the first leads us to a Markovian
stochastic process for just a single random variablekn ≡ k(1)n :

kn+2 = ψ [kn; θn+1, θn] ψ [k′; θ, θ ′] = cosh[βθ̃ ] + e−2βθ ′k′ cosh[β(θ−2J )]

cosh[β(θ+2J )] + e−2βθ ′k′ cosh[βθ̃ ]
. (19)

In terms of probability densities, the stochastic process (19) can equivalently be written as

Pi+2(k) = 1
4

∑
θ,θ ′

∫
dk′δ[k − ψ [k′; θ, θ ′]]Pi(k′). (20)
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Following in the footsteps of [2, 3] we assume the process (20) to be ergodic, and to have a
unique stationary stateP∞(k) = lim i→∞ Pi(k) (this assumption will turn out to be equivalent
to assuming self-averaging of the the free energy per spin, forN → ∞, with respect to the
realization of the random fields). The stationary densityP∞(k) can also be written as the
following average over the disorder:

P∞(k) = lim
N→∞

1

N

N∑
i=2

〈δ[k − ψ [ki−1; θi, θi−1]] 〉.

One easily obtains the expression forP∞(k) for three special (benchmark) casesθ̃ = 0 (no
external fields),J = 0 (no spin interactions) andθi = θ̃ ∀i (non-random external fields):

θ̃ = 0 or J = 0 : P∞(k) = δ[k − 1]

θi = θ̃∀i : P∞(k) = δ
[
k + eβ(2J+θ̃ ) sinh(βθ̃)− eβθ̃

√
1 + e4βJ sinh2(βθ̃)

]
.

(21)

It turns out that both the asymptotic free energy per spin (17) and the asymptotic distribution of
local magnetizations (8) can be fully expressed in terms of the stationary distributionP∞(k) for
the random variablek, which is what we will demonstrate next. We first invert the relations (18),
usingk(3)n = k(1)n , giving:

ZN,↑↓
ZN,↑↑

= e−2βθN k
(1)
N

ZN,↓↑
ZN,↑↑

= cosh[β(θN−J )]
cosh[β(θN+J )]

k
(2)
N (22)

ZN,↓↓
ZN,↑↑

= e−2βθN
cosh[β(θN−J )]
cosh[β(θN+J )]

k
(1)
N k

(2)
N . (23)

Using the strict positivity ofk(1)n we find that the outcome of the mappingψ [k; . . .] (19) lies
always in the interval [klow, kup], whereklow = k−1

up = cosh[βθ̃ ]/ cosh[β(θ̃+2J )]. Thus the
quantitiesk(1)n andk(2)n are bounded, one consequence of which is that we can write (17) as

f∞ = − lim
N→∞

1

βN
log

{
ZN,↑↑

[
1 + e−2βθN k

(1)
N +

cosh[β(θN−J )]
cosh[β(θN+J )]

k
(2)
N

+e−2βθN
cosh[β(θN−J )]
cosh[β(θN+J )]

k
(1)
N k

(2)
N

]}
= − lim

N→∞
1

βN
logZN,↑↑. (24)

This expression, which could also have been derived for any of the three other conditional
partition functions, just confirms that the asymptotic free energy is independent of our enforcing
of the states of the last two spins in the chain. Next we use (14):

lim
N→∞

1

βN
logZN,↑↑ = lim

N→∞
1

βN
log{M+

11[θN, θN−1]ZN−1,↑↑ +M+
12[θN, θN−1]ZN−1,↓↑}

= lim
N→∞

1

βN
log

{
ZN−1,↑↑

[
M+

11[θN, θN−1]

+M+
12[θN, θN−1]

cosh[β(θN−1−J )]
cosh[β(θN−1+J )]

kN−2e−2βθN−2

]}
.

Repetition of this argument, descending fully along the chain, allows us to completely
decompose the conditional partition functionZN,↑↑ and arrive at

lim
N→∞

1

βN
logZN,↑↑ = lim

N→∞
1

βN

N∑
i=3

log

{
M+

11[θi, θi−1]

+M+
12[θi, θi−1]

cosh[β(θi−1−J )]
cosh[β(θi−1+J )]

ki−2e−2βθi−2

}
.
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Substitution from (15) of the matrix elements ofM+[θi, θi−1] and insertion into (24) then leads
to the desired result:

f∞ = − 1

β
log 2 cosh[βθ̃ ] − lim

N→∞
1

βN

N∑
i=3

log

{
cosh[β(θi−1+2J )]

cosh[βθ̃ ]
+ ki−2e−2βθi−2

}
.

Since eachki only depends on random fieldsθj with j < i, the explicit occurrences of{θi−1}
and{θi−2} are automatically averaged out, independently of the{ki−2}, giving

f∞ = − 1

β
log 2 cosh[βθ̃ ] − 1

4β

∫
dkP∞(k) log{F(k, θ̃ , θ̃ )F (k,−θ̃ , θ̃ )

×F(k, θ̃ ,−θ̃ )F (k,−θ̃ ,−θ̃ )} (25)

with

F(k, θ ′, θ) = cosh[β(θ ′ + 2J )]

cosh[βθ̃ ]
+ ke2βθ .

This confirms that the solution of the model has indeed been reduced to determining the
stationary distributionP∞(k)of the stochastic map (19), as claimed. In the absence of either the
random fields or the interaction couplings we would find (20) evolving intoP∞(k) = δ[k−1]
and the free energy (25) would reduce tof∞ = − 2

β
log 2 cosh[βJ ], as it should (cf the limit

θ → 0 of the short-range/non-random field equations and the limitJ → 0 of the infinite-
range/random-field equations in [21]).

3.2. Statistics of local observables

Finally, in order to calculate the field distribution (8) and clarify the physical meaning of
the functionP∞(k) we now turn to the local magnetizations〈σ`〉 and the next-time nearest-
neighbour correlation functions〈σ`−1 tanh[βh`(σ)]〉, and show that they can be expressed
in terms of the conditional partition functions (12). This is achieved by exploiting the
symmetry�i [σi−1, σi, σi+1] = �i [σi+1, σi, σi−1], which allows us to write both〈σ`〉 and
〈σ`−1 tanh[βh`(σ)]〉 in terms of two sub-chains which start at the left- and right-hand side
of the originalN -spin chain, of length̀ andN−`+1 respectively, and which connect at site
`. We will take` to be an internal site, i.e. 2< ` < N − 1. Using the notation introduced
earlier (10) we obtain for the local magnetization

〈σ`〉 =
∑

σ1...σN
�1[0, σ1, σ2]

∏N−1
i=2 �i [σi−1, σi, σi+1]�N [σN−1, σN, 0]σ`

ZN,↑↑ +ZN,↑↓ +ZN,↓↑ +ZN,↓↓

= e−βθ`
∑

λτ∈{↑↓} γ
(`)
λτ Z`,λ↑ZN−`+1,τ↑ − eβθ`

∑
λτ∈{↑↓} γ

(`)
λτ Z`,λ↓ZN−`+1,τ↓

e−βθ`
∑

λτ∈{↑↓} γ
(`)
λτ Z`,λ↑ZN−`+1,τ↑ + eβθ`

∑
λτ∈{↑↓} γ

(`)
λτ Z`,λ↓ZN−`+1,τ↓

and for the local next-time nearest-neighbour correlations

〈σ`−1 tanh[βh`(σ)]〉

= e−βθ`
∑

λτ∈{↑↓} χ
(`)
λτ Z`,λ↑ZN−`+1,τ↑ + eβθ`

∑
λτ∈{↑↓} χ

(`)
λτ Z`,λ↓ZN−`+1,τ↓

e−βθ`
∑

λτ∈{↑↓} χ
(`)
λτ Z`,λ↑ZN−`+1,τ↑ + eβθ`

∑
λτ∈{↑↓} χ

(`)
λτ Z`,λ↓ZN−`+1,τ↓

in which

γ
(`)
λτ =

cosh[β(θ`+J (λ+τ))]

cosh[β(θ`+Jλ)] cosh[β(θ`+Jτ)]
χ
(`)
λτ =

λ sinh[β(θ`+J (λ+τ))]

cosh[β(θ`+Jλ)] cosh[β(θ`+Jτ)]
.

Both the sub-chain generated from the left, with` spins, and the sub-chain generated from
the right, withN−`+1 spins, will find at their endpoint sites their common random fieldθ`.
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Apart from this particular site, however, their remaining random fields are fully independent.
We divide the numerator and denominator byZ`,↑↑ZN−`+1,↑↑, and use (22), (23) to eliminate
the conditional partition functions in favour of the twostatistically independentsets of ratios
{k(n)` } and{k(n)N−`+1}. After some serious yet unpleasant book-keeping we then end up with

〈σ`〉 = e2βθ` − kN−`+1k`

e2βθ` + kN−`+1k`
= e2βθ` − ψ [kN−`+3; θN−`+2, θN−`+3]ψ [k`−2; θ`−1, θ`−2]

e2βθ` +ψ [kN−`+3; θN−`+2, θN−`+3]ψ [k`−2; θ`−1, θ`−2]
(26)

〈σ`−1 tanh[βh`(σ)]〉

= sinh[β(2J+θ`)]+ sinh[βθ`](k
(2)
N−`+1−k(2)` )+ sinh[β(2J−θ`)]k(2)N−`+1k

(2)
`

cosh[β(2J+θ`)]+ cosh[βθ`](k
(2)
N−`+1+k

(2)
` )+ cosh[β(2J−θ`)]k(2)N−`+1k

(2)
`

(27)

wherek(2)` = k`−1e−2βθ`−1 andk(2)N−`+1 = kN−`+2e−2βθN−`+2 and with the functionψ [. . .] as
defined in (19).

We now carry out a benchmark test of these results by comparing them with two
simple solvable cases, namely the synchronous infinite-range/random-field model and the
synchronous short-range/non-random field model as studied in [21]. Firstly, forJ = 0
the random variablek evolves towards the fixed pointk = 1 and the above expressions
for the local observables indeed reproduce the correct expressions〈σ`〉 = tanh[βθ`] and
〈σ`−1 tanh[βh`(σ)]〉 = tanh[βθ`−1] tanh[βθ`] (cf with the limit J → 0 of the infinite-
range/random-field equations in [21]). Secondly, in the absence of external fields we have
k = 1, which again reproduces the correct results〈σ`〉 = 0 and〈σ`−1 tanh[βh`(σ)]〉 = 0
(cf with the limit θ̃ → 0 of the short-range/non-random field equations in [21]). Finally for
uniform external fields, i.e. forθi = θ̃∀i or θi = −θ̃ ∀i we findP∞(k) evolving towards the
delta peak given by (21) which, combined with the above expresions for the local observables,
can again be shown to reproduce observables (7) as found via the transfer-matrix analysis of
the short-range/non-random field model in [21].

3.3. Link between synchronous and sequential dynamics

In the two special cases of synchronous dynamics models (infinite-range interactions and
random fields, short-range interactions and non-random fields) as studied in [21] we found
a simple relation between the transfer matrices (Tsyn = T 2

seq) and the free energies per spin
(fsyn = 2fseq) corresponding to parallel (synchronous) and sequential dynamics. We now
inspect the relation between the equilibria following synchronous versus sequential dynamics
in short-range random-field models. We have seen that in the thermodynamic limit all intensive
quantities ultimately follow from the stationary distributionP∞(k) of the random variablek.
We note that the stochastic process (19) underlying this random variable overlooks nearest
neighbours and thus distinguishes between even and odd sites:

synchronous: kn+2 = ψsyn[kn; θn+1, θn]

ψsyn[k
′; θ, θ ′] = cosh[βθ̃ ] + e−2βθ ′k′ cosh[β(θ−2J )]

cosh[β(θ+2J )] + e−2βθ ′k′ cosh[βθ̃ ]
.

This appears to be in sharp contrast with sequential Glauber-type random-field models, where
the one-dimensional RFIM analysis [2,3] leads to the following stochastic process:

sequential: kn+1 = ψseq[kn; θn] ψseq[k
′; θ ′] = e−βJ + k′eβJe−2βθ ′

eβJ + k′e−βJe−2βθ ′ . (28)
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It turns out that the link between the two processes is made via the following identity, which
can be verified by explicit substitution:

ψseq[ψseq[k
′; θ ′]; θ ] = ψsyn[k

′; θ, θ ′]. (29)

This relation, in turn, immediately allows us to derive the identityP
seq
∞ (k) = P syn

∞ (k). To see
this we express the probability distributionP seq

i+2(k) in terms ofP seq
i (k):

P
seq
i+2(k) = 1

4

∑
θ ′,θ ′′

∫
dk′ dk′′ δ[k′−ψseq[k

′′; θ ′′]]δ[k−ψseq[k
′; θ ′]]P seq

i (k′′)

= 1
4

∑
θ ′,θ ′′

∫
dk′′δ[k − ψseq[ψseq[k

′′; θ ′′]; θ ′]]P seq
i (k′′).

The transition probabilities in the last equation can be seen to have become exactly those
defined in (20) for synchronous dynamics. Thus the two probability destributionsP

seq
i (k) and

P
syn
i (k) basically describe the evolution of the same random variable, giving (upon assuming

uniqueness of the stationary state)P
seq
∞ (k) = P syn

∞ (k).
Let us finally turn to integrated densitieŝPi(k) =

∫ k
0 dzPi(z), in order to establish contact

with the solution of [3], and to appreciate in this alternative representation the equivalence of
sequential and synchronous dynamics. For the synchronous process (20) we now have

P̂
syn
i+2 (k) = 1

4

∑
θ,θ ′

∫ ∞
0

dk
∫ k

0
dzδ[z− ψsyn[k; θ, θ ′]]P syn

i (k)

= 1

4

∑
θ,θ ′

∫ k

0
dz

∣∣∣∣∂gsyn(z, θ, θ
′)

∂z

∣∣∣∣P syn
i (gsyn(z, θ, θ

′))

where

gsyn(z, θ, θ
′) = e2βθ ′ z cosh[β(θ+2J )] − cosh[βθ̃ ]

cosh[β(θ−2J )] − z cosh[βθ̃ ]
.

This allows us to now bring the integrated densities in the closed recurrence form:

P̂
syn
i+2 (k) = Ksyn[P̂

syn
i (k)]

Ksyn[L(k)] = 1
4{L(gsyn(k, θ̃ , θ̃ )) +L(gsyn(k, θ̃ ,−θ̃ ))
+L(gsyn(k,−θ̃ , θ̃ )) +L(gsyn(k,−θ̃ ,−θ̃ ))}.

(30)

We note that the corresponding sequential random-field expression found in [2,3] is

P̂
seq
i+1(k) = Kseq[P̂

seq
i (k)]

Kseq[L(k)] = 1
2{L(gseq(k, θ̃)) +L(gseq(k,−θ̃ ))}

gseq(k, θ) = e2βθ ke
βJ − e−βJ

eβJ − ke−βJ
(31)

and it can be easily verified thatgsyn(k, θ, θ
′) = gseq(gseq(k, θ), θ

′), which implies

Kseq[Kseq[P̂i(k)]] = Ksyn[P̂i(k)].

4. Physical properties of the model

4.1. The devil’s staircase and the free energy

It has been found in [3] that for e2βJ < 1 + 2 cosh[2βθ̃ ] the sequential dynamics integrated
distribution functionP̂ seq

∞ (k) acquires the form of a devil’s staircase. Since our analysis has
shown, upon suitable definition of the ratiok for synchronous dynamics, that the stationary
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distributionsP∞(k) of synchronous and sequential dynamics are identical, we will derive our
results for the synchronous RFIM, wherever possible, from the (less complicated) sequential
dynamics relation (31). The construction of the devil’s staircase solution can be found in [3] (see
also the much earlier paper [22]). It is based on the successive application of the operatorKseqon
P̂i−m(k)withm = 0, 1, . . . ,∞, and the derivation of upper and lower bounds for the intervals
over whichP̂i−m(k) is constant. At stagem of this procedure one obtains` = 1, . . . ,2m special
intervals, which will be denoted by1`

m, such that∀k ∈ 1`
m one hasP̂i+1(k) = (2`− 1)/2m+1.

The largest of these intervals is generated atm = 0: ∀k ∈ 11
0, P̂i+1(k) = 1

2. The lower and
upper endpoints of an interval1`

m, denoted by1`L
m and1`U

m , are generated by the recurrent
process:

1
(2`−1)L
m+1 = G(1`L

m , θ̃) 1
(2`−1)U
m+1 = G(1`U

m , θ̃)

1
(2`)L
m+1 = G(1`L

m ,−θ̃ ) 1
(2`)U
m+1 = G(1`U

m ,−θ̃ )
whereGinv(k,±θ̃ ) = gseq(k,±θ̃ ), and with initial values

1
1L
0 = G(1U, θ̃) 1L = gseq(1L, θ̃)

1
1U
0 = G(1L,−θ̃ ) 1U = gseq(1U,−θ̃ )

where1L and1U represent the points with the property:∀k < 1L, P̂i+1(k) = 0 and∀k > 1U ,
P̂i+1(k) = 1. For smallθ̃/J the support ofP∞(k), denoted by1 = ∪m,`L,`U {1`L

m ,1
`U
m }

forms a fully connected set, namely:1 = [1L,1U ]. As the ratioθ̃/J increases, and the
strength of the random fields starts to dominate the spin couplings,1 becomes disconnected.
From the point onwards where the difference11U

0 − 11L
0 first becomes non-negative (at

e2βJ = 1 + 2 cosh[2βθ̃ ]) P̂∞(k) will take the form of a devil’s staircase, and1 itself will
turn into the Cantor set with fractal dimensionDF < 1, see also [4, 9]. Figure 1(a) shows
how the set1 changes as the ratiõθ/J is varied. The vertical axis corresponds to the
normalized quantitỹk = (k − 1)/(k + 1) ∈ [−1, 1]. This graph has been drawn for 10 000
iterations of the synchronous stochastic map (19). White regions correspond to ratiosk

for which P(k) < 0.0001, i.e. non-attainable values ofψsyn[k′; θ, θ ′]. These are already
seen to be present for11U

0 − 11L
0 < 0, and correspond to plateaus of the integrated density

P̂ (k) (see figure 2(b)). For11U
0 − 11L

0 > 0 the graph shows distinct pairs of branches (for
positive and negativẽk) which correspond to the endpoints of the interval-bands1`L

m (θ̃/J )

and1`U
m (θ̃/J ) for all m, `. For largeθ̃/J the length of the interval11

0 approaches1U −1L

while the length of all other interval-bands1`
m tends to zero.P̂ (k) then approaches a simple

step function, withP̂ (k) = 1
2 for all k ∈ [1L,1U ]. Figure 1 also suggests thatP∞(k)

is symmetric when plotted againstk̃. This property can be derived analytically from the
identitygseq(k, θ̃) = 1/gseq(1/k,−θ̃ ) (by using it to verify via induction with respect ton that
P̂n(k) + P̂n(1/k) = 1), in combination with the assumed ergodicity of the stochastic process
for k and uniqueness ofP∞(k).

Figures 3 and 4 show the supports of the probability densities for the local observables
〈σ`〉 and〈σ` tanh[βσ`−1(σ)]〉, plotted against̃θ/J . For the local magnetization this support
eventually becomes a Cantor set, for largeθ̃/J , although not at the same transition line at which
the support ofP(k) does so. This has also been noted for the sequential RFIM in [4], and is
due to the fact that the expression (26) for〈σ`〉 involves the product oftwostochastic variables,
namelyk` andkN−`+1. In figure 4, dealing with next-time nearest-neighbour correlations,
we see that, due to the choice of ferromagnetic interactions (hereJ = 2.1), a spin at sitè
tends to align with its neighbours at a previous time step, leading to a positive bias for these
correlations. For sufficiently small random field strengths virually all〈σ` tanh[βh`−1(σ)]〉
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Figure 1. (a) Graphical representation of the set1 of possible values of the stochastic variablek,
as a function of the ratiõθ/J , for β = 0.6. It is constructed by performing 10 000 iterations of the
stochastic map (19). The vertical axis corresponds to the (normalized) quantityk̃ = (k−1)/(k+1).
White regions correspond to values ofk for whichP(k) < 0.0001, also showing up as plateaus in
figure 2. The set1 becomes a Cantor set, and thusP̂ (k) a devil’s staircase, for11U

0 −11L
0 > 0

(here: θ̃/J ≈ 0.96). (b) Phase diagram showing the transition line11U
0 −11L

0 = 0 whereP̂ (k)
takes the form of devil’s staircase. Note that the fractal dimension of the support ofP(k) is already
less than one before the transition to a devil’s staircase occurs.

Figure 2. The integrated probability densitŷP(k) as a function of the (normalized) variable
k̃ = (k−1)/(k+1), for β = 0.6. (a) Parameters such that11U

0 −11L
0 < 0 (here:θ̃/J = 0.8). Here

P̂ (k) is highly non-trivial, although not yet a devil’s staircase. One can distinguish pairs of plateaus
(for positive and negativẽk) for which P̂ (k) is constant, which correspond to the white (vertical)
segments in figure 1 at the cross-sectionθ̃/J = 0.8. (b) Parameters such that11U

0 −11L
0 > 0

(here: θ̃/J = 1.23). HereP̂ (k) has become a complete devil’s staircase.

will be positive. For largẽθ/J , on the other hand, the random fields will dominate, and the
〈σ` tanh[βh`−1(σ)]〉 will be equally likely to be positive or negative. Once again the picture
of discreteness of the set of allowed local observables emerges for largeθ̃/J . For θ̃ = 0, the
spin interactions control all spin correlations, and the support of the probability density for the
〈σ` tanh[βh`−1(σ)]〉 is just a single point.

Let us finally return to the free energy. Since we know that the integrated densityP̂
syn
∞ (k)

takes the form of a devil’s staircase, the corresponding distributionP
syn
∞ (k)will be a collection
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Figure 3. (a) Graphical representation of the set of possible values of any local magnetization〈σ 〉
as a function of the ratiõθ/J , for β = 0.6 (constructed from expression (26), for chain length
N = 10 000). For sufficiently small̃θ/J one observes a fully connected set, whereas for larger
θ̃/J it turns into the Cantor set. (b) The integrated probability density for local magnetizations, for
θ̃ = 1.5; here one already observes plateaus.

Figure 4. (a) Graphical representation of the set of possible values of any local next-time nearest-
neighbour correlationα = 〈σ` tanh[βh`−1(σ)]〉 as a function of the ratiõθ/J , for β = 0.6
(constructed from expression (27), for chain lengthN = 10 000). The graph’s bias towards positive
values ofα is caused by our choice of ferromagnetic interactions: co-alignment with neighbouring
sites is preferred, leading to positive correlations. Increasing the ratioθ̃/J allows the random fields
to dominate spin couplings, and produces highly non-trivial effects on the support ofα. (b) The
integrated probability density of the local next-time nearest-neighbour correlations, forθ̃/J = 1.5.

of delta functions peaked at the endpoints of the intervals1`
m. This allows us to perform the

integral overP∞(k) in (25), and express the free energy formally as

f∞ = − 1

β
log 2 cosh[βθ̃ ] +

1

4β
8[1U ] − 1

4β

∞∑
m=0

2m∑
`=1

(
2`− 1

2m+1

)
{8[1`U

m ] −8[1`L
m ]} (32)

where

8(k) = log{F(k, θ̃ , θ̃ )F (k,−θ̃ , θ̃ )F (k, θ̃ ,−θ̃ )F (k,−θ̃ ,−θ̃ )}
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F(k, θ ′, θ) = cosh[β(θ ′ + 2J )]

cosh[βθ̃ ]
+ ke2βθ .

4.2. Entropy and ground state degeneracy

Due to theβ-dependence of the pseudo-Hamiltonian (4) which characterizes the equilibrium
state of the present model (with synchronous dynamics) we can in principle no longer be sure
beforehand of the validity of thermodynamic relations, especially when they involve derivatives
with respect to temperature. In this section we will first define and then investigate properties
of the entropy, with particular emphasis on its behaviour near the system’s ground state. As in
ordinary Boltzmann-type situations, one finds that the entropy can be defined via the counting
of states (which is, by the way, equivalent to Shannon’s information-theoretic definition):

S = −
∑
σ

p∞(σ) logp∞(σ). (33)

From (33) one easily verifies the validity ofF = U − T S upon inserting the equilibrium
distributionp∞(σ) = Z−1e−βHβ (σ), with Peretto’s pseudo-Hamiltonian (4), together with the
conventional definitionsZ = ∑

σ e−βHβ (σ), F = − 1
β

logZN andU = 〈Hβ(σ)〉. However,
these self-consistent definitions now imply the identity

S = −∂F
∂T

+

〈
∂

∂T
Hβ(σ)

〉
. (34)

Working out expression (34) using (4) gives us for the asymptotic entropy per spins =
limN→∞ S/N :

s = −∂f∞
∂T
− lim

N→∞
1

N

N∑
i=1

〈log 2 cosh[βhi(σ)] − βhi(σ) tanh[βhi(σ)]〉.

For T → 0 the last term is an average overN sites of terms of the form limx→∞ |x|[1 −
tanh(|x|)], each of which goes to zero. Thus, in contrast to the finite-temperature case, the
familiar Gibbsian expression for the ground state (zero-temperature) entropy per spin isnot
affected by the temperature dependence of the Hamiltonian (4):

lim
T→0

s = − lim
T→0

∂f∞
∂T

.

Numerical differentiation of the free energy per spin (25) for increasingly low temperatures
shows that the entropy becomes non-zero forθ̃/J 6 2 while for θ̃/J < 2 an infinite series of
transitions appear at

θ̃

J
= 2

r
with r = 1, 2, . . . ,∞

wheres is relatively large. This type of behaviour has also been noted for Glauber-type
random-field systems [5], and is generally interpreted as the fingerprint of a high degree of
frustration. As the temperature is gradually decreased towardsT = 0 we find that the peaks in
−∂f∞/∂T (as functions of̃θ/J ) are smooth local maxima, which become increasingly sharper
asT → 0 (figure 5). Although numerical constraints prevent us from evaluating∂f∞/∂T
exactlyat T = 0, the emerging pattern is both transparent and convincing;at the ground state
the entropy per spin will depend oñθ/J as an infinite series of delta-type spikes, separated by
a monotonic sequence of step functions, as in [5].
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Figure 5. Close to the ground state the function−∂f∞/∂T (which reduces to the entropy per spin
s precisely atT = 0) is seen to become non-zero forθ̃/J 6 2, and to develop an infinite series
of smooth local maxima, located at the special ratiosθ̃/J = 2/r for r = 1, 2, . . . ,∞. As the
temperature is reduced to zero, these maxima sharpen consistently, becoming infinitely sharp peaks
atT = 0.

5. Discussion

In this paper we have solved the one-dimensional random field Ising model with synchronous
dynamics, using the equilibrium distribution characterized by Peretto’s [15] (pseudo-)
Hamiltonian and an adaptation of the techniques originally developed for the sequential
dynamics RFIM (see, e.g., [2, 3]). These techniques are based on deriving autonomous (but
stochastic) recurrent relations for conditioned partition functions, expressing those of anN +1
spin system (withN + 1 random fields) in terms of those of anN spin one (withN random
fields).

In contrast to the sequential RFIM, we show that for the synchronous dynamics RFIM
one needs to condition on the states of the lasttwo spins in the chain, rather than just the
last one, in order to arrive at autonomous recurrent stochastic relations. This leads to a
more complicated (Markovian) stochastic map for three ratios(k(1), k(2), k(3)) of conditioned
partition functions, rather than just one. In spite of this we manage to prove rigorously that the
physics of the two RFIM versions (sequential versus synchronous) are asymptotically identical,
by first reducing the number of relevant ratios in the synchronous dynamics case down to a
single ratiok, followed by a demonstration that double iteration of the sequential dynamics
Markovian process (as derived in [2, 3]) is equivalent to a single iteration of the synchronous
dynamics process as derived here. This result contributes significantly to our as yet modest
general knowledge of the relation between the equilibrium states induced by sequential versus
parallel dynamics in Ising spin systems, which so far has been build up mostly via the study
of mean-field models. We recover phases where the familiar devil’s staircase form appears
for the integrated densities of local magnetizations and nearest neighbour spin correlations,
and we find a non-zero ground state entropy (which, due to the temperature dependence of the
pseudo-Hamiltonian obeys non-standard thermodynamic relations) with an infinite number of
singularities as function of the random field strength, similar to what was found earlier for
sequential (bond-)disordered Ising chains in [5].
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